Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phenylacetaldehyde synthase 2 does not contribute to the constitutive formation of 2-phenylethyl-β-D-glucopyranoside in poplar.

Identifieur interne : 000786 ( Main/Exploration ); précédent : 000785; suivant : 000787

Phenylacetaldehyde synthase 2 does not contribute to the constitutive formation of 2-phenylethyl-β-D-glucopyranoside in poplar.

Auteurs : Jan Günther [Allemagne] ; Axel Schmidt [Allemagne] ; Jonathan Gershenzon [Allemagne] ; Tobias G. Köllner [Allemagne]

Source :

RBID : pubmed:31532355

Descripteurs français

English descriptors

Abstract

In response to herbivory, poplar produces among other compounds the volatile alcohol 2-phenylethanol and its corresponding glucoside 2-phenylethyl-β-D-glucopyranoside. While the free alcohol is released only upon herbivory, the glucoside accumulates also in undamaged leaves, but increases after herbivore feeding. Recently we showed that 2-phenylethanol and its glucoside are biosynthesized via separate pathways in Populus trichocarpa. The phenylacetaldehyde synthase PtAAS1 plays a central role in the de novo formation of herbivory-induced volatile 2-phenylethanol, while the phenylalanine decarboxylase PtAADC1 initiates a pathway responsible for the herbivory-induced production of 2-phenylethyl-β-D-glucopyranoside. Besides PtAAS1, P. trichocarpa possesses another aromatic aldehyde synthase PtAAS2 with in vitro enzymatic activity comparable to that of PtAAS1. However, in contrast to PtAAS1, which is exclusively expressed in herbivory-damaged leaves, PtAAS2 was found to be expressed at constant levels in both damaged and undamaged leaves. Thus it has been hypothesized that PtAAS2 provides phenylacetaldehyde as substrate for the constitutive formation of 2-phenylethyl-β-D-glucopyranoside in undamaged P. trichocarpa trees. By generating RNAi-mediated AAS2 knockdown plants, we show here that despite the similar activities of PtAAS1 and PtAAS2 in vitro, the latter enzyme does not contribute to the biosynthesis of 2-phenylethyl-β-D-glucopyranoside in planta. Based on the recent finding that phenylpyruvic acid accumulates in undamaged poplar leaves, the constitutive formation of the glucoside may now be suggested to proceed via the Ehrlich pathway, which begins with the conversion of phenylalanine into phenylpyruvic acid.

DOI: 10.1080/15592324.2019.1668233
PubMed: 31532355
PubMed Central: PMC6804715


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Phenylacetaldehyde synthase 2 does not contribute to the constitutive formation of 2-phenylethyl-β-D-glucopyranoside in poplar.</title>
<author>
<name sortKey="Gunther, Jan" sort="Gunther, Jan" uniqKey="Gunther J" first="Jan" last="Günther">Jan Günther</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department for Biochemistry, Max Planck Institute for Chemical Ecology , Jena , Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department for Biochemistry, Max Planck Institute for Chemical Ecology , Jena </wicri:regionArea>
<wicri:noRegion>Jena </wicri:noRegion>
<wicri:noRegion>Jena </wicri:noRegion>
<wicri:noRegion>Jena </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schmidt, Axel" sort="Schmidt, Axel" uniqKey="Schmidt A" first="Axel" last="Schmidt">Axel Schmidt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department for Biochemistry, Max Planck Institute for Chemical Ecology , Jena , Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department for Biochemistry, Max Planck Institute for Chemical Ecology , Jena </wicri:regionArea>
<wicri:noRegion>Jena </wicri:noRegion>
<wicri:noRegion>Jena </wicri:noRegion>
<wicri:noRegion>Jena </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department for Biochemistry, Max Planck Institute for Chemical Ecology , Jena , Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department for Biochemistry, Max Planck Institute for Chemical Ecology , Jena </wicri:regionArea>
<wicri:noRegion>Jena </wicri:noRegion>
<wicri:noRegion>Jena </wicri:noRegion>
<wicri:noRegion>Jena </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kollner, Tobias G" sort="Kollner, Tobias G" uniqKey="Kollner T" first="Tobias G" last="Köllner">Tobias G. Köllner</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department for Biochemistry, Max Planck Institute for Chemical Ecology , Jena , Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department for Biochemistry, Max Planck Institute for Chemical Ecology , Jena </wicri:regionArea>
<wicri:noRegion>Jena </wicri:noRegion>
<wicri:noRegion>Jena </wicri:noRegion>
<wicri:noRegion>Jena </wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31532355</idno>
<idno type="pmid">31532355</idno>
<idno type="doi">10.1080/15592324.2019.1668233</idno>
<idno type="pmc">PMC6804715</idno>
<idno type="wicri:Area/Main/Corpus">000704</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000704</idno>
<idno type="wicri:Area/Main/Curation">000704</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000704</idno>
<idno type="wicri:Area/Main/Exploration">000704</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Phenylacetaldehyde synthase 2 does not contribute to the constitutive formation of 2-phenylethyl-β-D-glucopyranoside in poplar.</title>
<author>
<name sortKey="Gunther, Jan" sort="Gunther, Jan" uniqKey="Gunther J" first="Jan" last="Günther">Jan Günther</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department for Biochemistry, Max Planck Institute for Chemical Ecology , Jena , Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department for Biochemistry, Max Planck Institute for Chemical Ecology , Jena </wicri:regionArea>
<wicri:noRegion>Jena </wicri:noRegion>
<wicri:noRegion>Jena </wicri:noRegion>
<wicri:noRegion>Jena </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schmidt, Axel" sort="Schmidt, Axel" uniqKey="Schmidt A" first="Axel" last="Schmidt">Axel Schmidt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department for Biochemistry, Max Planck Institute for Chemical Ecology , Jena , Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department for Biochemistry, Max Planck Institute for Chemical Ecology , Jena </wicri:regionArea>
<wicri:noRegion>Jena </wicri:noRegion>
<wicri:noRegion>Jena </wicri:noRegion>
<wicri:noRegion>Jena </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department for Biochemistry, Max Planck Institute for Chemical Ecology , Jena , Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department for Biochemistry, Max Planck Institute for Chemical Ecology , Jena </wicri:regionArea>
<wicri:noRegion>Jena </wicri:noRegion>
<wicri:noRegion>Jena </wicri:noRegion>
<wicri:noRegion>Jena </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kollner, Tobias G" sort="Kollner, Tobias G" uniqKey="Kollner T" first="Tobias G" last="Köllner">Tobias G. Köllner</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department for Biochemistry, Max Planck Institute for Chemical Ecology , Jena , Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department for Biochemistry, Max Planck Institute for Chemical Ecology , Jena </wicri:regionArea>
<wicri:noRegion>Jena </wicri:noRegion>
<wicri:noRegion>Jena </wicri:noRegion>
<wicri:noRegion>Jena </wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant signaling & behavior</title>
<idno type="eISSN">1559-2324</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetaldehyde (analogs & derivatives)</term>
<term>Acetaldehyde (metabolism)</term>
<term>Carboxy-Lyases (metabolism)</term>
<term>Herbivory (physiology)</term>
<term>Phenylethyl Alcohol (metabolism)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (metabolism)</term>
<term>Volatile Organic Compounds (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acétaldéhyde (analogues et dérivés)</term>
<term>Acétaldéhyde (métabolisme)</term>
<term>Alcool phénéthylique (métabolisme)</term>
<term>Carboxy-lyases (métabolisme)</term>
<term>Composés organiques volatils (métabolisme)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Herbivorie (physiologie)</term>
<term>Populus (métabolisme)</term>
<term>Protéines végétales (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Acetaldehyde</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Acetaldehyde</term>
<term>Carboxy-Lyases</term>
<term>Phenylethyl Alcohol</term>
<term>Plant Proteins</term>
<term>Volatile Organic Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Acétaldéhyde</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acétaldéhyde</term>
<term>Alcool phénéthylique</term>
<term>Carboxy-lyases</term>
<term>Composés organiques volatils</term>
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Herbivorie</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Herbivory</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In response to herbivory, poplar produces among other compounds the volatile alcohol 2-phenylethanol and its corresponding glucoside 2-phenylethyl-β-D-glucopyranoside. While the free alcohol is released only upon herbivory, the glucoside accumulates also in undamaged leaves, but increases after herbivore feeding. Recently we showed that 2-phenylethanol and its glucoside are biosynthesized via separate pathways in
<i>Populus trichocarpa</i>
. The phenylacetaldehyde synthase PtAAS1 plays a central role in the
<i>de novo</i>
formation of herbivory-induced volatile 2-phenylethanol, while the phenylalanine decarboxylase PtAADC1 initiates a pathway responsible for the herbivory-induced production of 2-phenylethyl-β-D-glucopyranoside. Besides PtAAS1,
<i>P. trichocarpa</i>
possesses another aromatic aldehyde synthase PtAAS2 with
<i>in vitro</i>
enzymatic activity comparable to that of PtAAS1. However, in contrast to
<i>PtAAS1</i>
, which is exclusively expressed in herbivory-damaged leaves,
<i>PtAAS2</i>
was found to be expressed at constant levels in both damaged and undamaged leaves. Thus it has been hypothesized that PtAAS2 provides phenylacetaldehyde as substrate for the constitutive formation of 2-phenylethyl-β-D-glucopyranoside in undamaged
<i>P. trichocarpa</i>
trees. By generating RNAi-mediated
<i>AAS2</i>
knockdown plants, we show here that despite the similar activities of PtAAS1 and PtAAS2
<i>in vitro</i>
, the latter enzyme does not contribute to the biosynthesis of 2-phenylethyl-β-D-glucopyranoside
<i>in planta</i>
. Based on the recent finding that phenylpyruvic acid accumulates in undamaged poplar leaves, the constitutive formation of the glucoside may now be suggested to proceed via the Ehrlich pathway, which begins with the conversion of phenylalanine into phenylpyruvic acid.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31532355</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>06</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>06</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1559-2324</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>Plant signaling & behavior</Title>
<ISOAbbreviation>Plant Signal Behav</ISOAbbreviation>
</Journal>
<ArticleTitle>Phenylacetaldehyde synthase 2 does not contribute to the constitutive formation of 2-phenylethyl-β-D-glucopyranoside in poplar.</ArticleTitle>
<Pagination>
<MedlinePgn>1668233</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1080/15592324.2019.1668233</ELocationID>
<Abstract>
<AbstractText>In response to herbivory, poplar produces among other compounds the volatile alcohol 2-phenylethanol and its corresponding glucoside 2-phenylethyl-β-D-glucopyranoside. While the free alcohol is released only upon herbivory, the glucoside accumulates also in undamaged leaves, but increases after herbivore feeding. Recently we showed that 2-phenylethanol and its glucoside are biosynthesized via separate pathways in
<i>Populus trichocarpa</i>
. The phenylacetaldehyde synthase PtAAS1 plays a central role in the
<i>de novo</i>
formation of herbivory-induced volatile 2-phenylethanol, while the phenylalanine decarboxylase PtAADC1 initiates a pathway responsible for the herbivory-induced production of 2-phenylethyl-β-D-glucopyranoside. Besides PtAAS1,
<i>P. trichocarpa</i>
possesses another aromatic aldehyde synthase PtAAS2 with
<i>in vitro</i>
enzymatic activity comparable to that of PtAAS1. However, in contrast to
<i>PtAAS1</i>
, which is exclusively expressed in herbivory-damaged leaves,
<i>PtAAS2</i>
was found to be expressed at constant levels in both damaged and undamaged leaves. Thus it has been hypothesized that PtAAS2 provides phenylacetaldehyde as substrate for the constitutive formation of 2-phenylethyl-β-D-glucopyranoside in undamaged
<i>P. trichocarpa</i>
trees. By generating RNAi-mediated
<i>AAS2</i>
knockdown plants, we show here that despite the similar activities of PtAAS1 and PtAAS2
<i>in vitro</i>
, the latter enzyme does not contribute to the biosynthesis of 2-phenylethyl-β-D-glucopyranoside
<i>in planta</i>
. Based on the recent finding that phenylpyruvic acid accumulates in undamaged poplar leaves, the constitutive formation of the glucoside may now be suggested to proceed via the Ehrlich pathway, which begins with the conversion of phenylalanine into phenylpyruvic acid.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Günther</LastName>
<ForeName>Jan</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0001-8042-5241</Identifier>
<AffiliationInfo>
<Affiliation>Department for Biochemistry, Max Planck Institute for Chemical Ecology , Jena , Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schmidt</LastName>
<ForeName>Axel</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department for Biochemistry, Max Planck Institute for Chemical Ecology , Jena , Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gershenzon</LastName>
<ForeName>Jonathan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department for Biochemistry, Max Planck Institute for Chemical Ecology , Jena , Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Köllner</LastName>
<ForeName>Tobias G</ForeName>
<Initials>TG</Initials>
<Identifier Source="ORCID">0000-0002-7037-904X</Identifier>
<AffiliationInfo>
<Affiliation>Department for Biochemistry, Max Planck Institute for Chemical Ecology , Jena , Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>09</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Signal Behav</MedlineTA>
<NlmUniqueID>101291431</NlmUniqueID>
<ISSNLinking>1559-2316</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D055549">Volatile Organic Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.1.1.-</RegistryNumber>
<NameOfSubstance UI="D002262">Carboxy-Lyases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.1.1.53</RegistryNumber>
<NameOfSubstance UI="C019517">phenylalanine decarboxylase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GO1N1ZPR3B</RegistryNumber>
<NameOfSubstance UI="D000079">Acetaldehyde</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>ML9LGA7468</RegistryNumber>
<NameOfSubstance UI="D010626">Phenylethyl Alcohol</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>U8J5PLW9MR</RegistryNumber>
<NameOfSubstance UI="C013192">phenylacetaldehyde</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000079" MajorTopicYN="N">Acetaldehyde</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002262" MajorTopicYN="N">Carboxy-Lyases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060434" MajorTopicYN="N">Herbivory</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010626" MajorTopicYN="N">Phenylethyl Alcohol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055549" MajorTopicYN="N">Volatile Organic Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y"></Keyword>
<Keyword MajorTopicYN="Y">2-phenylethanol</Keyword>
<Keyword MajorTopicYN="Y">2-phenylethyl-β-D-glucopyranoside</Keyword>
<Keyword MajorTopicYN="Y">aldehyde synthase</Keyword>
<Keyword MajorTopicYN="Y">herbivory</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>9</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>9</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31532355</ArticleId>
<ArticleId IdType="doi">10.1080/15592324.2019.1668233</ArticleId>
<ArticleId IdType="pmc">PMC6804715</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>BMC Plant Biol. 2014 Nov 28;14:304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25429804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Feb;61(4):1111-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20065117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2008 Apr;74(8):2259-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18281432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2009 Aug;12(4):479-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19467919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Feb 10;311(5762):808-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Oct;121(2):325-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10517823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Feb 01;6:20234</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26831950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Nov;25(11):4737-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24220631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2018 Jan 8;11(1):205-217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29277428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2011 Jun;72(9):897-908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21492885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2019 Jun;180(2):767-782</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30846485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2000 May;54(2):121-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10872203</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
</list>
<tree>
<country name="Allemagne">
<noRegion>
<name sortKey="Gunther, Jan" sort="Gunther, Jan" uniqKey="Gunther J" first="Jan" last="Günther">Jan Günther</name>
</noRegion>
<name sortKey="Gershenzon, Jonathan" sort="Gershenzon, Jonathan" uniqKey="Gershenzon J" first="Jonathan" last="Gershenzon">Jonathan Gershenzon</name>
<name sortKey="Kollner, Tobias G" sort="Kollner, Tobias G" uniqKey="Kollner T" first="Tobias G" last="Köllner">Tobias G. Köllner</name>
<name sortKey="Schmidt, Axel" sort="Schmidt, Axel" uniqKey="Schmidt A" first="Axel" last="Schmidt">Axel Schmidt</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000786 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000786 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31532355
   |texte=   Phenylacetaldehyde synthase 2 does not contribute to the constitutive formation of 2-phenylethyl-β-D-glucopyranoside in poplar.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31532355" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020